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ABSTRACT

This research explores the feasibility of using the electrical properties of a metal powder to

characterize the overall quality of the powder for use in powder bed fusion additive manufacturing.

Feed powder which is recycled over multiple build cycles will no longer build quality parts; manu-

facturers and operators are interested in the ability to measure the powder degradation over time,

to determine when the feed powder needs to be replaced or refreshed. The effects of reuse have

been monitored using both chemical and mechanical characterization tests. The characterization

tests investigate the particle size distribution (PSD), density, morphology, and surface chemistry

of the feed powder. Additionally, strength and ductility of the built parts have also been assessed

using mechanical testing, allowing correlation of the feed powder properties with the built part

quality. Mechanical and chemical testing is expensive and time consuming. It is hypothesized that

changes to the electrical properties of feed powder from reuse offers a pathway to in-line monitoring

of feed powder quality. As a first step to developing an electromagnetic nondestructive evaluation

method, broadband dielectric spectroscopy (BDS) measurements of wax-based metal powder com-

posites were conducted. Seven different stainless-steel powder samples were prepared by altering

their PSD, morphology and surface chemistry. It was shown that changes in PSD, morphology,

and surface chemistry could be detected using BDS. These results will aid in the development of

an in-line capacitive sensor for monitoring feed powder quality.
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CHAPTER 1. INTRODUCTION

This research explores the application of broadband dielectric spectroscopy to detect changes in

additive manufacturing feed powder. The feed powder used in additive manufacturing is affected by

the high temperature build process which causes changes in the powder morphology, particle size

distribution, and surface oxide. These changes may affect the electric permittivity of the powder

which can be detected using broadband dielectric spectroscopy.

1.1 General introduction

Additive manufacturing of metal parts is a new and rapidly growing industry. The process

of additive manufacturing, where a part is built in incremental layers, was pioneered in the late

1980s at the University of Texas at Austin by J. J. Beaman and C. R. Deckard (1). Following

the first selective laser sintering (SLS) system patent in 1990 by Deckard and Beaman, additive

manufacturing has experienced an explosion of innovation and research interest, especially industrial

additive manufacturing. One of the largest exhibitions and conferences for industrial additive

manufacturing, Formnext, had over 850 industrial exhibitors in attendance in 2019 (2). There are

many technologies in use and being developed for metal additive manufacturing. These different

laser based technologies have been broadly classified by Gu into three categories: laser sintering

(LS), laser melting (LM), and laser metal deposition (LMD) (3). In addition to a laser heat source,

some additive manufacturing systems use an electron beam heat source. Laser sintering uses the

laser heat source to partially melt and fuse feed powder together. Typically, the feed powder is

a mixture of metal alloys or a premixed alloy. The mixture of powders allows for a high melting

point structural component and a low melting point binder (3). Laser melting based systems use

a laser heat source, which is more powerful than that used in laser sintering, to fully melt the

feed powder. Melting the feed powder creates a fully dense final product with density approaching
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99.9% (3). Whereas, the density of laser sintered parts has been measured at 95% following post

processing binder removal and infiltration of a filler metal (4). In both laser sintering and laser

melting the apparatus is functionally the same; a flat layer of powder is held in a powder bed over

which the laser source is scanned to either sinter or melt the feed powder. Whereas, in laser metal

deposition the feed stock in the form of powder or wire is injected into the laser path where it is

melted and deposited onto the part (3). This research concentrates on the additive manufacturing

feed powder used, independent of the melting method. For simplicity, I will reference the laser

based powder bed fusion system throughout this thesis. Laser melting is sometimes called powder

bed fusion. In a powder bed fusion system, the part is built layer by layer. First, feed powder is

spread in a thin flat layer in the powder bed. Next, the heat source is scanned across the XY plane

of the feed powder melting and fusing the powder into a solid. This process continues layer by layer

until the part is finished. Most of the feed powder placed into the powder bed is not fused into a

final product and is recycled back into the system for future use. Reuse of feed powder is a major

advantage of additive manufacturing because it reduces the material costs of production, but it is

also a source of problems, as described in the next paragraph.

In a powder bed fusion system there are many process parameters under control of the operator

such as: laser power, the output power of the laser; hatch distance, the lateral displacement between

linear laser traces; scanning speed, the translational velocity of the part or laser beam; and layer

thickness, the thickness of the feed powder layer in the powder bed (5). These parameters act to

control the heat flow into the material to create a homogeneous, fully dense part (3). Incorrectly

setting these parameters can yield poor quality parts which exhibit porosity defects such as gas

entrapment or lack of fusion, which may result in inconsistent build quality (5). In laser melting

systems gas entrapment can occur from two main sources, gas present in the feed powder and

shielding gas entrapped by the Marangoni effect (5). The Marangoni effect is the mass transfer

which occurs between two fluids with a surface tension gradient (6; 5). Lack-of-fusion defects occur

when there is not enough thermal energy to melt the feed powder (5). Aside from trial and error or

operator experience, there is little information available to the technician for initially setting these
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parameters, and once set the operators typically refrain from adjusting them. Process parameter

optimization is an active area of research for various engineering materials. Many researchers

approach the question by measuring the mechanical properties of the built parts as the process

parameters are varied. This approach results in a collection of parameter values which seem to

work best for a given material (7; 8; 9). However, as the feed powder is recycled through multiple

build cycles the build quality degrades while using the same process parameters. This degradation

can be attributed to changes in the feed powder properties over multiple build cycles which mean

that the initial process parameter settings become sub-optimal.

Multiple research groups and equipment manufacturers have used mechanical and chemical

characterization techniques to investigate the change in feed powder properties over multiple build

cycles (10; 11; 12). With regard to stainless steel alloy 316L feed powder, the material studied

herein, the literature shows that there is an increase, over build cycles, in the average particle

diameter and the oxygen content of the feed powder (12; 11; 13; 14). The change in the particle

size distribution is attributed to a reduction in fines (particles with diameters less than the mean

diameter) with an increase in the number of larger particles. Smaller particles are removed during

the additive manufacturing process by sintering into larger particles (10; 5). Large and irregularly

shaped particles can be created during the build process by the agglomeration of weld splatter

from the melt pool, partial sintering, and lack of fusion processes (5). Increasing oxygen content

in the feed powder has been associated with an increase in the thickness of the oxide layer of the

un-melted feed powder (11). These cited works employed sophisticated and costly mechanical and

chemical characterization tools to gather data on the feed powder. It may be possible, instead, to

use the electrical properties of the powder to determine process parameters or the fitness for use of

the feed powder.

In this study we seek to assess the feasibility of using the electrical properties of the metal feed

powder to characterize the overall quality of the feed powder for use in additive manufacturing.

Measurement of the electrical properties can be faster, less expensive, and importantly nondestruc-

tive, when compared to mechanical means of testing. To capture the possible changes in the feed
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powder during a build cycle, seven different stainless steel 316L powder samples were prepared by

altering their particle size distributions, morphology, and oxygen content. Broadband dielectric

spectroscopy was employed to investigate the electrical properties of wax-based composites formed

with dispersed samples of the metal powder. This work potentially supports the development of

nondestructive evaluation techniques which can characterize the feed powder properties and pro-

vide in-line production feedback. This feedback can close the production loop allowing timely and

intelligent setting of process parameters which affect build quality.

1.2 Dissertation organization

This thesis is laid out in three chapters. Chapter one includes a general introduction of additive

manufacturing and the systems currently in use while identifying the challenges encountered during

feed powder reuse. Additionally, the background topics which are used to develop and support my

hypothesis are discussed: dielectric relaxation in solids, broadband dielectric spectroscopy, and

effective medium approaches. Lastly, the major hypothesis and research statement are presented.

Chapter two discusses in detail the study materials, sample preparation, and experimental method.

The thesis concludes with the third chapter wherein the results are discussed, conclusions drawn,

and suggestions for future work and applications are given.

1.3 Background and literature review

Broadband dielectric spectroscopy (BDS) is a powerful analysis tool based on measuring the

complex impedance Z(ω) of a material in the frequency range of 10−6 Hz to 1012 Hz (15). By

analyzing how the impedance changes with frequency (ω), electrical properties of the material

can be determined. Additionally, because the change in the material’s behavior with frequency is

related to the structure of the material, the spectra can contain information about the physical

and electronic structure of the material. Broadband dielectric spectroscopy measures the macro-

scopic bulk properties of a material; which treats the material as a homogeneous isotropic medium.

This treatment means that the results can be directly applied to homogeneous isotropic materials.
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Whereas, in the case of inhomogeneous materials such as composites, it is necessary to use effective

medium theories or some other method to interpret the results. Several effective medium theories

have been developed to predict the effective electrical properties of a mixture of materials. I will

discuss a fundamental overview of the broadband dielectric spectroscopy measurement technique,

dielectric relaxation in solids, and finally several effective medium theories used to predict the

electrical properties of mixtures or composites.

1.3.1 Dielectric relaxation in solids

In the previous section I discussed how broadband dielectric spectroscopy is typically performed.

This section is concerned with why the complex permittivity changes with frequency. Jonscher (16)

defines relaxation from a mechanical point of view as, “the recovery of strain on removal of stress.”

We see this type of behavior when we press and remove our hands from a foam mattress. The hand

print deformation slowly returns to normal. Relaxation is not instantaneous because all physical

systems have “inertia” whether it be physical inertia from the mass of molecules, or the electrical

force of interaction between a charge carrier and the material lattice. In dielectric relaxation,

and other dielectric measurement techniques (dielectric resonance), we are concerned with how the

polarization within the material changes upon the removal of an external electric field.

Polarization (
−→
P ) is a vector quantity defined as the dipole moment (−→p ) per unit volume.

Revisiting the constitutive equation for displacement,
−→
D = ε0

−→
E +
−→
P , we see that the displacement

is composed of two parts, the free space response ε0
−→
E and the material response

−→
P , giving the

units for polarization as Coulombs per unit area. Dipoles are formed by the finite separation of

positive and negative charges within a material, giving rise to a dipole moment −→p = qdd̂ which

is a vector quantity pointing along the charge separation from the negative charge to the positive

charge with magnitude equal to the amount of charge q separated by a distance d. Polarization is

then the vector sum of the dipole moments per unit volume. Dipoles can be permanent such as the

charge separation which occurs in molecular bonds (polar molecules such as water), or induced as

the material responds to the applied electric field (molecules which are stretched by an electric field
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form dipoles which oppose the stretching) (17). An intermediate polarization mechanism between

the permanent dipoles and the induced dipoles is polarization by hopping charge carriers. Jonscher

in (17) describes polarization by hopping charge carriers as the movement of electric charge between

localized sites in the material. As an example, Jonscher describes a crystalline solid composed of a

lattice of NiO. If one of the Ni++ atoms is replaced with a monovalent lithium atom Li+, the lithium

site looks negative in comparison to the nickel sites. To restore charge neutrality a nearby Ni++

atom will give an electron to the Li+ atom, creating a Ni+++ atom and a dipole moment pointing

from the Li site to the Ni+++. The electron can come from any nearby Ni++, therefore the positive

charge associated with the Ni+++ can hop between energetically favorable Ni++ sites (17). Which

site is energetically favorable is influenced by the application of an electric field. Jonscher further

points out that if, in strongly disordered materials such as amorphous and non-metallic solids,

there exists a linking network of localized defect sites that span the dimensions of the material

then the movement of the hopping electrons through the material would be indistinguishable from

direct current conduction (17). Therefore, the phenomena responsible for the formation of dipole

moments can also lead to direct current conduction in amorphous solids where band conduction via

free charge carriers does not typically occur (17). Jonscher further points out that materials which

exhibit charge hopping polarization have alternating current conductivity which can be modeled

by σ′(ω) = σ0 + Aωn (17). When plotting the real part of the complex conductivity for these

systems, two regimes of power law behavior become apparent as shown in Figure 1.1. A low

frequency regime where the conductivity approaches the DC asymptote σ0 and a high frequency

regime where the conductivity becomes linear in the log of frequency, the transition between the

two behaviors is marked by a transition frequency ωc which is proportional to the DC conductivity

σ0 according to the Barton-Nakajima-Namikawa (BNN) relationship (15). The transition between

the low frequency regime and the high frequency regime is related to the long range and short range

mobility of the hopping carrier. In the low frequency regime the conductivity is limited by the long

range mobility; whereas, in the high frequency regime the conductivity is limited by short range

mobility. Kremer points out that the transition frequency marks the “bottle neck” in the charge
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carrier system after which the conductivity saturates as frequency is lowered (15). In a percolating

network this bottle neck may be the most energetically difficult or unlikely hopping transition.

Figure 1.1 Representation of a hopping carrier system showing relationship between the

log of the real part of the complex conductivity σ′(ω) and the log of angular

frequency (ω). Source: Adapted from (16)

Having discussed the formation of electric dipoles in some materials, we will now continue to

describe the dispersive behavior of permittivity, or polarization, with frequency. An electric dipole

in an electric field experiences a torque that attempts to align the dipole with the external electric

field. This is easiest to envision for dilute solutions of non-interacting polar molecules such as those

studied by Debye (18). When the electric field is applied to the solution of polar molecules, which

are free to move, they rotate to align their dipole moments with the field. In the static case, Debye

only considered the randomizing influence of thermal agitation which competes with the ordering

influence of the applied field to calculate the average dipole moment for the dilute solution (17).
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In the transient case, Debye further considered the viscosity of the fluid in which the dipoles are

floating to be the limiting factor which could prevent full alignment of the dipole moments with

the applied field. With respect to the transient case with a sinusoidal electric field, Debye noted in

(18) that because the dipoles require a finite time to align themselves, eventually as the frequency

of oscillation increases, “one quarter of a period of the electrical force will be insufficient time for

the molecules to orient themselves.” The inability of the molecules to follow the electric field as

frequency increases causes an overall reduction in the polarization from the static case; which is

the dispersion of permittivity with frequency. This phenomena occurs in all materials including

materials which exhibit charge hopping (17). Dispersion of permittivity in charge hopping systems

is affected by the transition probabilities between localized hopping sites (17). In other words,

the electric field could oscillate faster than the transition probability would allow for the electron

to execute a hop. In which case, the hopping mechanism no longer contributes to the overall

polarization.

1.3.2 Broadband dielectric spectroscopy: A fundamental overview

The frequency-dependent electrical properties of materials are of practical interest to both en-

gineers and solid state physicists. Electrical engineers need to select materials whose behaviors will

be stable and predictable within their operating environment while physicists are concerned with

the underlying mechanisms causing the dispersion in the material property with frequency. Start-

ing with the engineers perspective, this section will discuss how broadband dielectric spectroscopy

measurements are conducted.

The dielectric data can be represented in various equivalent forms. However, the primary

electrical property of interest when discussing dielectrics is their complex permittivity ε∗(ω) =

ε′(ω) − jε′′(ω), (ω is the radial frequency, j =
√
−1). The real part of the complex permittivity

ε′(ω) is proportional to the energy stored (or polarizability) of the external excitation and the

imaginary part of the complex permittivity ε′′(ω) is proportional to the energy lost per period (15).

The complex permittivity is a function of frequency or time because of the inability of a system
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to instantaneously respond to the change in an external excitation, as discussed in Section 1.3.1.

From the constitutive relation for electrical displacement
−→
D = ε∗ε0

−→
E (where

−→
D is the displacement

or surface charge developed on the dielectric when exposed to an external electric field
−→
E , and

ε0 is the permittivity of free space) it can be seen that ε∗ affects the amplitude and phase of the

material response to an external field. A common way to measure the permittivity of a material is

to form a parallel plate capacitor with the material as in Figure 1.2. The resulting capacitance can

be calculated using the simple relation for an ideal parallel plate capacitor C∗ = ε∗ε0
A
d (where A

is the area of the electrode and d is the separation between the electrodes). The impedance of the

parallel plate capacitor can then be measured and the capacitance determined from the relation

Z∗(ω) = −j
ωC∗ (where Z∗(ω) is the frequency dependent impedance, it is understood that Z∗(ω)

is a frequency dependent complex value and typically it is represented only as Z). Impedance is

the sinusoidal analog to Ohm’s law V = IR → |V |6 θv = |I| 6 θIZ, where now the voltage and

current are phasor quantities with magnitude and phase angle. The impedance of the parallel plate

capacitor is measured as shown in Figure 1.3. A sinusoidal excitation voltage is applied across the

capacitor and the resulting current through the capacitor is measured. Modern instruments such

as the Novocontrol Alpha-A use digital lock-in amplifiers to increase the signal to noise ratio and

precision transimpedance amplifiers to accurately measure the current signal. A dielectric spectrum,

such as that shown in Figure 1.4, is gathered by measuring the impedance as the frequency is swept

in the range of µHz to GHz.

1.3.3 Effective medium approaches

Effective medium theories try to model the effective or overall properties of inhomogeneous

media by taking into account the material parameters, volume fractions, size and shape distribu-

tions, etc, of the constituent materials. Kremer points out in (15) that James Clerk Maxwell was

the first to derive a mean field theory for a composite made of dispersed spherical particles in a

matrix material which he wrote about in his 1873 treatise on electricity and magnetism (20). In

a section titled conduction in heterogeneous media, Maxwell describes a process to calculate the
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Figure 1.2 Schematic of a cylindrical parallel plate capacitor incorporating a dielectric

between the two cylindrical electrodes (shown in blue). D is the electrode

diameter, d is the separation between the electrodes, and t is the electrode

thickness.

static effective resistivity ρ of a spherical matrix which contains spherical inclusions. Maxwell’s

effective medium theory was based on the assumption that the spherical inclusions are remote from

each other such that the perturbation on the incident current density by each spherical inclusion

was independent. In other words, the potential for each spherical inclusion uses the same form

independent of where the inclusion is located. Additionally, Maxwell only considered real valued

electrical properties in his derivation. Another important relationship that Maxwell noted in his

treatise was how the behavior of a stratified dielectric composed of layers of material with different

electrical properties can exhibit dielectric relaxation even though the constituent materials may be

ideal, loss-less dielectrics. This phenomenon is referred to as interfacial polarization and was further

developed by Wagner (21) and Sillars (22). Later in 1904 James Clerk Maxwell-Garnett developed

a quasi-static theory which incorporated the Lorentz local field approximation to model the dipole-

dipole interactions between spherical particle inclusions in a matrix (23). The Maxwell-Garnett

formula can be written as follows (23).

N ′2 − ν2

N ′2 + 2ν2
= ϕf

N2 − ν2

N2 + 2ν2
(1.1)
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Figure 1.3 Schematic of a typical impedance measurement setup showing the sinusoidal

excitation source and the measurement of the voltage U(f) and current I(f)

through the parallel plate capacitor. Source: Adapted from (19)

In the preceding equation ϕf is the volume fraction of the inclusion, N ′ and N are the optical

constants (N =
√
ε∗) for the effective medium and the inclusion respectively, and ν is the refractive

index of the matrix, ν(1−iκ) =
√
ε∗, where κ is the absorption coefficient for the material. Maxwell-

Garnett was interested in modeling the colors of metal glasses and using his theory he was able to

predict the colors of glasses based upon the optical properties of the mixture components (23). The

Maxwell-Garnett formula is applicable to dilute inclusion mixtures with volume fractions less than

20 percent and the size of the particles must be much smaller than the wavelength of the incident

electric field such that the field can be approximated as uniform (15). In Maxwell-Garnett’s work

the volume fraction was on the order of 10−6 to 10−4 (23). Additionally, Maxwell-Garnett’s model

uses a lossless matrix material. In a parallel effort Wagner, in 1914, arrived at a similar expression

while working to apply Maxwell’s stratified dielectric ideas to a matrix particle system and create
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Figure 1.4 The real and imaginary part of the dielectric susceptibility for an ideal Debye

process [Note ε∗(ω) = 1 + χ′(ω)− jχ′′(ω)] . Source: Adapted from (16)

a more general theory (21). Wagner allowed for complex-valued electric properties in his theory to

capture the effects of non-ideal dielectrics (15). Later in 1937, Sillars extended Wagners work to

include ellipsoids by incorporating a shape factor which describes the orientation of the particles

with respect to the axis of the applied field (22). Maxwell-Wagner-Sillars or MWS polarization can

be calculated using the following relationships as set out by Kremer (15).

ε∗c(ω) = ε∗m(ω)
nε∗f (ω) + (1− n)ε∗m(ω) + (1− n)[ε∗f (ω)− ε∗m(ω)]ϕf

nε∗f (ω) + (1− n)ε∗m(ω)− n[ε∗f (ω)− ε∗m(ω)]ϕf
(1.2)

na =
4

3
πabc

ˆ ∞
0

dξ

(ξ + a2)V (ξ)
(1.3)

V (ξ) =
4

3
π
√

(ξ + a2)(ξ + b2)(ξ + c2) (1.4)

In the proceeding expressions, ε∗m(ω) and ε∗f (ω) are the complex permittivities of the matrix material

and the filler material respectively. ε∗c(ω) is the complex permittivity of the effective media. ϕf is

the volume fraction of the filler material. na is the shape parameter which describes the impact of
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the particle shape. The shape parameter coincides with the axes of the ellipsoid named a, b, and c by

Sillars. Sillars studied the effect of prolate and oblate spheroids (22). In Sillars’ derivation the a axis

points along the applied field axis, n can take on values between 0 ≤ n ≤ 1, and for a sphere n = 1
3 .

The effect of changing the particle shape can be seen in Figure 1.5. This figure is representative

of water droplets suspended in paraffin wax. As the water droplets are elongated in the direction

of the field, the amount of water necessary to reach the desired loss factor (tan δ = ε′′

ε′ ) decreases

and the frequency at which the maximum loss factor occurs decreases (22). Therefore, in systems

with the same volume fraction of material, we would expect much higher losses as the inclusions

are elongated. It can be shown that the MWS formula reduces to the Maxwell Garnett formula

for spherical inclusions where the matrix material has frequency independent permittivity with no

conductivity and the inclusion material has frequency independent permittivity and conductivity.

In summary, heterogenenous materials such as composites where there is a contrast in material

properties give rise to interfacial polarization and dielectric relaxation. Interfacial polarization is

affected by the material property contrast between the matrix and inclusion materials, the volume

fraction of the inclusions, the shape of the inclusions, the spatial distribution of the inclusions,

the orientation of the inclusions with respect to the applied field, and the size distribution of the

inclusions.



www.manaraa.com

14

Figure 1.5 Predicted volume percent qr of conductive filler to produce a maximum

tan δ = 0.01 for ε′f = 41ε′m, as a function of the axis ratio a/b of spheroidal

inclusions whose a axis are aligned with the external field. Source: Adapted

from (22)
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1.4 Hypothesis

Feed powder particles used in powder bed fusion systems undergo changes in morphology, par-

ticle size distribution, and surface oxidation during the additive manufacturing build process. I

hypothesize that these changes to the powder will cause a change in the powder’s electrical permit-

tivity which can be detected using broadband dielectric spectroscopy, this change in permittivity

can be used as the basis for the development of an online capactive nondestructive evaluation

method in order to monitor the changes in the feed powder through build cycles.
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CHAPTER 2. EXPERIMENTAL

The following sections detail the experimental materials used, the measurement methods, and

the procedures used to prepare data for analysis.

2.1 Study materials and preparation

Seven 316L stainless steel powders were provided by the Naval Nuclear Laboratory (NNL) for

use in this study. The powders were purchased from AMTEK, a commercial supplier of additive

manufacturing metal powders. All powders were used as supplied. The powders have been desig-

nated M316L1 through M316L5, and the two oxidized powders have been designated NNL1 and

NNL2. M316L1 through M316L5 have been modified by the manufacturer to change the particle

size distribution and morphology of the particles. NNL1 and NNL2, have been intentionally oxi-

dized to develop or grow the oxide layer on the surface of the powder. M316L1, M316L4, M316L5

have been manufactured using gas atomization; whereas, M316L2 and M316L3 have been manufac-

tured using water atomization. Water atomization creates a more irregular non-spherical particle

than gas atomization; which can be seen in Figure 2.1. The differences between the powders is

summarized in Table 2.1. Additionally, paraffin wax (411663-1Kg) was supplied from Sigma Aldrich

and used as received. The paraffin wax was used as a binder for making dielectric spectroscopy

samples; which will be discussed in a following paragraph.
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Table 2.1 Designed property variations, manufacturer provided size information, and mea-

sured density results. The size information from the manufacturer represents:

(mesh screen through which the powder passes/mesh screen through which the

powder does not pass).

Powder Manufacturing Method Size (µm) Density (g/mL) Notes

M316L1 Gas atomized (74/10) 7.83± 0.02 wide distribution

M316L2 Water atomized (63/20) 7.83± 0.02 most irregular shape

M316L3 Water atomized (63/20) 7.74± 0.02 more spherical shape

M316L4 Gas atomized (74/25) 7.88± 0.02 fines depleted

M316L5 Gas atomized (88/10) 7.88± 0.02 bimodal distribution

NNL1 Gas atomized note 7.87± 0.02 oxidized 0.25%

NNL2 Gas atomized note 7.84± 0.02 oxidized 0.35%

Note: The size information for powders NNL1 and NNL2 was not available at the time of writing.

Figure 2.1 Secondary electron micrographs showing the difference in morphology between

gas atomized (left) and water atomized (right) powders. Note the prolate

spheroidal shape of the water atomized powder. Secondary electron microscopy

performed by Michael Burrell (NNL)
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2.1.1 Material characterization

The particle size (diameter in microns) distribution of powders M316L1-M316L5 were analyzed

using histogram plots and by fitting a log normal cumulative distribution function to the cumulative

percent undersize calculated from the sieve analysis provided by the manufacturer. The cumulative

percent undersize was chosen so that the function increases monotonically as the mesh size in

microns increases, whereas the cumulative percent mass increases monotonically as the mesh size

in microns decreases. The fit was performed using the nlinfit function of MATLAB, with parameter

estimates based on hand plots of the cumulative percent undersize on Weibull two cycle log paper, as

described in (24). The results of the fit can be seen in Figure 2.3. The probability density function

of the powder size was parameterized from the fit results and can be seen in Table 2.2. The skewness

or asymmetry of the log normal probability distribution is a function of the σ fit parameter where

skewness =
[
exp (σ2) + 2

]√
exp (σ2)− 1. Therefore, the wideness of the distribution is proportional

to the standard deviation (σ) of the ln (x), where x is the particle diameter.

The density of the metal powders used in this study were measured using a helium pycnometer

(G-DENPYC 2900). The measurement results are tabulated in Table 2.1. Each density value is the

mean of ten repeated density measurements; the reported density is based on a standard uncertainty

multiplied with a coverage factor (k = 2), providing a level of confidence of approximately 95%.

The uncertainty in the density measurement was determined in accordance with the International

Organization for Standardization guide to the expression of the uncertainty in measurements (25).

Secondary electron images and size distribution estimates were made available by the researchers

at Knolls Atomic Power Laboratory. These secondary electron images, in Figure 2.5 and 2.6,

show the stark contrast in morphology between powders produced via gas atomization and water

atomization. Additionally, the relative size distributions for the gas atomized powders can be seen

in the images. The size distributions were estimated from scanning electron microscopy images.

Size distribution results are provided for the oxidized powders NNL1 and NNL2 in Figure 2.4.
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Table 2.2 Metal powders cumulative percent undersize log normal fit parameters and cal-

culated expectation of the powders diameter. The reported uncertainty is the

95% confidence interval provided by the MATLAB fitting function

Powder E[ln (X)], µ Std[ln (X)], σ E(X), exp (µ+ σ2

2 ) (µm)

M316L1 3.7± 0.1 0.5± 0.2 50± 6

M316L2 3.44± 0.02 0.23± 0.03 32± 1

M316L3 3.6± 0.1 0.3± 0.2 40± 4

M316L4 3.89± 0.06 0.3± 0.1 50± 3

M316L5 3.8± 0.2 0.8± 0.4 60± 23
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(a) (b)

(c) (d)

(e)

Figure 2.2 Histogram of manufacturer sieve analysis of metal powders showing percent

mass of powder remaining on each sieve and percent mass of powder passing

through to pan (< 25µm): (a) M316L1, (b) M316L2, (c) M316L3, (d) M316L4,

and (e) M316L5
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Figure 2.3 Comparison of the powders cumulative percent undersize, log normal model

fits are shown as dashed lines.
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(a) (b)

Figure 2.4 Size distributions determined from scanning electron microscopy images: (a)

NNL1, (b) NNL2. The vertical axis represents the particle count and the

horizontal axis is the particle diameter in µm. Sizing information performed

by Jessica Pyle (NNL)
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(a) (b)

(c) (d)

Figure 2.5 Secondary electron images: (a) M316L1, (b) M316L2, (c) M316L3, (d) M316L4.

Secondary electron imaging performed by Michael Burrell (NNL)
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(a) (b)

(c)

Figure 2.6 Secondary electron images: (a) M316L5, (b) NNL1, (c) NNL2. Secondary

electron imaging performed by Michael Burrell (NNL)
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2.1.2 Sample preparation

Thirty percent volume fraction metal powder composite samples (master batches) were formed

by hand-blending the dry metal powder with melted paraffin wax. Resulting samples were 30:70

powder volume to volume of paraffin wax. Care was taken to fully incorporate and homogeneously

distribute the metal powder. Thirty percent volume fraction samples were selected because the

predicted permittivity of the various effective medium theories start to converge near 30 percent

which gives the advantage that the results from the different theories can be directly compared.

Additionally, it was found that at higher volume fractions the samples became too brittle for

successful experiments. The volume fraction of the master batches was determined to be 0.32± 0.02;

the reported uncertainty is based on a standard uncertainty multiplied with a coverage factor k = 2,

providing a level of confidence of approximately 95%. The volume fraction was calculated assuming

that the paraffin wax density, 0.89± 0.01 g/mL, was the average of the density ranges provided in

(26). Additionally, the uncertainty in the paraffin wax density was taken to be uniformly distributed

within the range of the handbook densities.

Spectroscopy samples were formed by pressing material from the prepared master batches in

a 13-mm outer-diameter evacuable pellet die (Carver 3619), such as those used to form Fourier-

transform infrared spectroscopy (FTIR) samples using potassium bromide powder. The master

batch material was pressed in the die using a manual hydraulic benchtop press (Specac GS15011)

set to three tons of pressure for three minutes. The time and pressure used were selected to create

completely fused samples while limiting leakage of the paraffin wax through the small tolerance

opening between the anvil and the die bore. The resulting pellet is a short cylinder with an outer

diameter of 13 mm. The amount of master batch material was selected so that the finished pellet

thickness would be approximately 0.5 mm, allowing for a capacitance measurement greater than 20

pF. The capacitance value of 20 pF was selected to ensure that the impedance measurement was

in the most accurate region of the measurement equipment. To facilitate pellet removal from the

die anvils a commercially available PDMA release agent was used. Comparisons in the dielectric

spectroscopy results for pellets with release agent and pellets without release agent showed no
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change in dielectric behavior within the frequency ranges measured. The use of the PDMA release

agent and a cold plate allowed easy removal of the pressed pellets from the die anvils. The thickness

of the spectroscopy pellets was measured using a digital indicator (Sylvac ultra mark IV 25 mm)

and stand. To limit the deformation of the spectroscopy sample while measuring its thickness, the

sample was sandwiched between two microscope slides of known thickness. The reported thickness

is the mean of ten measurements across the surface of the sample. To account for and reduce

the experimental error associated with sample variability ten replicate pressed samples from each

master batch were made.

Following thickness measurements the electrode contact faces of the pressed samples were coated

with a thin layer of colloidal silver paint. The silver paint reduces electrode contact resistance

between the measurement equipment and the pressed sample, additionally the paint reduces the

effect of air gaps from imperfect contact at the electrode to sample interface.
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2.2 Experimental method

The electrical properties of the metal powder composite samples were measured using broadband

dielectric spectroscopy. Dielectric measurements were carried out using a Novocontrol Alpha-A

dielectric/impedance measurement system consisting of the Novocontrol Alpha-A mainframe, ZGS

Active sample cell shown in Figure 2.7, Quatro cryosystem, and desktop computer running the

Novocontrol winDETA software. The complex capacitance of the pressed samples was measured

using the following parameters: temperature maintained at 25.00 ± 0.01 ◦C, excitation voltage

1.00 ± 0.02 Vrms, frequency swept from 100 Hz to 10 MHz in 50 logrithmically spaced steps.

Prior to gathering data, the equipment was calibrated and prepared for use in accordance with

manufacturer procedures. Each pressed sample was measured ten times yielding 500 data points.

The combined data for the ten replicate pressed samples gives 5000 data points for each metal

powder composite.

The raw complex capacitance data from the Novocontrol system was post processed to correct

for edge capacitance in accordance with (19). This additional nondispersive (the edge field moves

through the air) capacitance is caused by the finite size of the electrodes. Corrections were necessary

because of the small sample capacitances measured, the edge capacitance could account for nearly

20 percent of the measured capacitance. Following edge correction the complex conductivity and

permittivity of the samples were extracted. These processes are discussed in more detail below.
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Figure 2.7 Novocontrol ZGS active sample cell showing the gold plated parallel plate elec-

trodes. In the figure the upper electrode is separated from the lower electrode

by a piece of white shipping material. The large silver colored cylinder above

the upper electrode is an isolation mechanism between the electrode and the

height adjustment screw. Source: (27)
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2.2.1 Edge capacitance correction

Following calibration of the Novocontrol system the reference plane for the system extends to the

built in electrodes of the ZGS active sample cell. The use of additional electrodes to form the sample

capacitor adds uncompensated edge capacitance from the finite size of the additional electrodes.

This uncompensated edge capacitance is in parallel with the sample capacitance and therefore,

the edge capacitance adds to the sample capacitance. The uncompensated edge capacitance can

be considered purely real, because the electric field extending from the edges of the electrodes

passes through an approximately nondispersive medium, air. In the following equations C∗meas is

the measured capacitance, C∗samp is the desired sample capacitance, Cedge is the undesired edge

capacitance, δ is the angle between the real capacitance axis and the complex capacitance vector

or π
2 − θ where θ is the impedance phase angle, finally j =

√
−1.

C∗meas = C∗samp + Cedge (2.1)

|C∗meas| cos (δ)− j|C∗meas| sin (δ) = C∗samp + Cedge (2.2)

Using the analytical expression for Cedge given in (19) and the above relationships C∗samp can be

determined.

Cedge = ε0
π

4

D2

d

2d

πD

[
ln

8πD

d
− 3− z(x)

]
(2.3)

z(x) = (1 + x) ln (1 + x)− x ln (x) (2.4)

x =
t

d
(2.5)

whereD is the electrode diameter, d is the separation between electrodes, t is the electrode thickness,

and ε0 is the permittivity of free space. These dimensions can be seen in Figure 1.2.

2.2.2 Complex conductivity and permittivity extraction

Following edge correction, the complex permittivity ε∗(ω) = ε′(ω)− jε′′(ω) was calculated from

the sample capacitance C∗samp using the parallel plate cylindrical capacitor relationship.

C∗samp = ε∗ε0
π

4

D2

d
(2.6)
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The complex conductivity σ∗(ω) = σ′(ω)+jσ′′(ω) can be determined from the complex permittivity

using the following relationships.

∇×H = J + ∂tD (2.7)

D = ε∗ε0E (2.8)

J = σ∗E (2.9)

σ∗ = jωε∗ε0 (2.10)

2.2.2.1 Kramers-Kronig relations

The Kramers-Kronig relations between the real and imaginary parts of the complex permittivity

are of great importance. These relationships allow only one part of the permittivity to be used to

fully represent the dielectric spectra; which is why I only show the imaginary part of the permittiv-

ity in this thesis. Additionally, because the Kramers-Kronig relations allow the complete dielectric

response to be characterized by one part of the complex permittivity, it allows only one part of

the permittivity to be measured. Measuring one part of the complex permittivity may be advan-

tageous because it could allow for greater measurement sensitivity or accuracy. Jonscher develops

the Kramers-Kronig relationships from the time-dependent dielectric response (17). Jonscher first

defines the time dependent displacement noting that all physical systems will have a delayed ma-

terial response to an external applied field. In the time dependent equation for displacement the

material response is captured in the time dependent polarization P (t).

D(t) = ε0E + P (t) (2.11)

Jonscher next defines the response function f(t) as the material polarization in response to a delta

function excitation E∆t, such that in the limit as ∆t→ 0 the product E∆t remains constant.

P (t) = ε0(E∆t)f(t) (2.12)

Using the response function we can build the material response for any excitation because the

time-dependent excitation can be represented as an impulse chain of delta function excitations and
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importantly, because the material system is causal, linear and time invariant. The second condition

means that the material response can be represented as the sum of time shifted and amplitude scaled

impulse responses. These conditions result in a convolution integral for the material polarization.

P (t) = ε0

ˆ ∞
0

f(t)E(t− τ)dτ (2.13)

The Fourier transform of this convolution integral into the frequency domain results in a multipli-

cation.

P (ω) = ε0χ
∗(ω)E(ω) (2.14)

where χ∗(ω), the electrical susceptibility related to the permittivity via ε∗(ω) = χ∗(ω) + 1, is now

the Fourier transform of the response function f(t)

χ(ω) = χ′(ω)− jχ′′(ω) =

ˆ ∞
0

f(t) exp (−jωt)dt (2.15)

χ′(ω) =

ˆ ∞
0

f(t) cos (ωt)dt (2.16)

χ′′(ω) =

ˆ ∞
0

f(t) sin (ωt)dt (2.17)

Looking at the resulting functions for the components of the susceptibility, Jonscher points out that

because the two components of the susceptibility are dependent upon the same response function

f(t) it should possible to eliminate the response function and show that the two components are

related to each other (17). By incorporating the following relationship from complex analysis the

Kramers-Kronig relations are found, where
ffl

represents the Cauchy principal value (17).

1

π

 ∞
−∞

sin(xt)

x− ω
dx = cos(ωt) (2.18)

χ′(ω) =
1

π

 ∞
−∞

χ′′(x)

x− ω
dx (2.19)

χ′′(ω) = − 1

π

 ∞
−∞

χ′(x)

x− ω
dx (2.20)

In summary, because the material response is from a physically real system it must be causal

(i.e. the field induced change in polarization cannot precede the application of the field). As a

consequence of causality the real and imaginary parts of the Fourier transform of the response
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function are related by the Kramers-Kronig relations. This relationship means that only one of

the components of the permittivity or susceptibility is necessary to fully describe the dielectric

spectra. However, the Kramers-Kronig relationships do not capture the affect of DC conductivity

which is only reflected in the measured imaginary part of the permittivity. The Kramers-Kronig

relations apply to the time dependent material response and do not include the DC conduction

because it is independent of time or frequency. This can be seen by examining the constitutive

equation for the time dependent current density, where the material response f(t) incorporates an

instantaneous DC value and a time dependent component. The causal time dependence of the

response function inevitably leads to similar Kramers-Kronig expressions as those shown for the

electric susceptibility. Following the Fourier transformation of Equation 2.23 (where I have used

the property that convolution in time is multiplication in frequency) and using Euler’s identity for

the complex exponential in the Fourier transform of the time dependent conductivity, it can be seen

that the DC conductivity term σ0 will add to the real part of the material response. Where there is a

DC conductivity or a high frequency permittivity, the Kramers-Kronig relations cannot be directly

applied to the measurement data. The data must first be corrected for the DC conductivity or high

frequency permittivity in order to make the measured conductivity or permittivity Kramers-Kronig

consistent. The time dependent AC conductivity will be captured in the dielectric response of the

material, and can be retrieved using the relationships discussed in Section 2.2.2.

J(t) =

ˆ ∞
0

f(τ)E(t− τ)dτ (2.21)

f(t) = σ0δ(t) + σ̃(t) (2.22)

J(t) = σ0E(t) +

ˆ ∞
0

σ̃(τ)E(t− τ)dτ (2.23)

J(ω) = σ0E(ω) +

(ˆ ∞
0

σ̃(t) exp (−jωt)dt
)
E(ω) (2.24)

J(ω) = σ0E(ω) +

(ˆ ∞
0

[σ̃(t) cos (ωt)− jσ̃(t) sin (ωt)] dt

)
E(ω) (2.25)

The composites studied were found to be weak conductors which exhibit a small DC conductivity

and AC conductivity. Because the conductivity of the samples is of interest to parameterize the
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differences between the composites, I have chosen to plot the imaginary part of the permittivity

for analysis.

2.2.3 Fitting procedure

The electrical properties of the metal powder composite samples were parameterized by fitting

relaxation models to the processed data. Two behavior models were found to produce good fits for

the samples. I will discuss the fitting procedure used for the two models in the following sections.

2.2.3.1 AC conductivity

The unoxidized powders M316L1 through M316L5 were fit using the AC conductivity model

Equation 2.26 presented by Jonscher for hopping charge carrier systems with no dielectric loss

peaks (17).

σ′(ω) = σ0 +Aωn (2.26)

Because of the small parameter values, the model was modified to minimize numeric underflow

when using the nlinfit function of MATLAB. Numeric underflow was identified by MATLAB via

the ill defined Jacobian at the solution. The modified model is shown in Equation 2.27 where the

DC conductivity term σ0 has been replaced by 10C and the coefficient for the AC conduction A

has been replaced by 10B. These modifications allow for MATLAB to search for larger parameter

values during the fitting process.

σ′(ω) = 10C + 10Bωn (2.27)

Initial parameter estimates were gathered from plots of the AC conductivity. With reference to

Figure 2.8, the log of the real conductivity becomes linear in the log of frequency at frequencies

greater than 105 Hz. Two representative points in the linear region were selected and the equation

for a line between the points was determined. Parameter estimates for the AC conductivity coeffi-

cient A and the exponent n were determined from the intercept and slope of the line. Parameter

estimates for the DC conductivity σ0 were gathered from the low frequency limit of the plot. A
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weighted non linear fit was conducted using the nlinfit function of MATLAB. A weighted fit was

used to incorporate the observation weights of the data so that the uncertainty in the fit parameters

reflects the uncertainty in the data. The weighted fit utilized the inverse of the standard deviation

of the mean for the observation weight. In this case, data which has more variability is punished

during the fit by a lower observation weight. The results of the fit can be seen in Figure 2.9 where

the two distinct power law relationships can be seen.

Figure 2.8 Plot of real conductivity σ′(ω) for powder M316L1. Each data value is the

mean of 100 measurements. The reported uncertainty is the standard uncer-

tainty multiplied by a coverage factor k = 2, providing a level of confidence of

approximately 95%
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Figure 2.9 Plot of imaginary permittivity ε′′(ω) for powder M316L1. Each data value

is the mean of 100 measurements. The reported uncertainty is the standard

uncertainty multiplied by a coverage factor k = 2, providing a level of confi-

dence of approximately 95%. The dashed line represents the DC conductivity

contribution. The dash dot line represents the AC conductivity contribution.
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2.2.3.2 Havriliak-Negami

The dielectric spectra of oxidized powders NNL1 and NNL2 were fit using a double Havriliak-

Negami function shown in Equation 2.28.

ε∗(ω) = −j
(
σ0
ε0ω

)n
+

2∑
k=1

[
∆εk

(1 + (jωτk)αk)βk
+ ε∞k

]
(2.28)

The fit was carried out using the winFIT software from Novocontrol Technologies. Initially,

these powders were fit using the AC conductivity model from the previous section. Residuals from

the AC conductivity model revealed the presence of a distinct relaxation peak in the dielectric

spectra. To better model the relaxation peak the Havriliak-Negami function was selected. Initial

parameter estimates were found by manually tuning the relaxation function after estimating the

relaxation peak frequency. The results of this fitting process are shown in Figure 2.10
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Figure 2.10 Plot of imaginary permittivity ε′′(ω) for powder NNL1. Each data value is the

mean of 100 measurements. The reported uncertainty is the standard uncer-

tainty multiplied by a coverage factor k = 2, providing a level of confidence of

approximately 95%. The dotted line is the result of the fit in Equation 2.28.
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CHAPTER 3. RESULTS

The following sections gather the results of the broadband dielectric spectroscopy measure-

ments. The measured imaginary permittivity and real conductivity are plotted to show the differ-

ences between the metal powder wax composites. The fitting parameters have been tabulated with

uncertainties provided by the nlinfit MATLAB function for powders M316L1 through M316L5 and

the winFIT Novocontrol software for the oxidized powders NNL1 and NNL2. The reported uncer-

tainty for the fitting parameters is at the 95% confidence level. For the figures shown, each data

value is the mean of 100 measurements. The reported uncertainty in the figures is the standard

uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately

95%. The standard uncertainty was determined in accordance with the International Organization

for Standardization Guide to the Expression of Uncertainty in Measurement (25). It was found that

the main source of experimental uncertainty was sample-to-sample variation in the ten replicate

samples prepared for each powder. The sample-to-sample variation is captured in the standard

error of the mean; which is used as the standard uncertainty. Because the sample-to-sample vari-

ation dominates the experimental uncertainty, other sources of experimental uncertainty such as

geometric tolerances and instrument error are not considered.
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3.1 Real conductivity

The real conductivity was extracted from the edge corrected capacitance values as described

in Section 2.2 and shown in Figure 3.1. The unoxidized powders M316L1 through M316L5, which

exhibit charge hopping DC conduction with no visible loss peaks, were fitted using the Jonscher

model for AC conductivity described in 2.2.3.1

σ′(ω) = 10B + 10Cωn

The tabulated values of the fitting parameters (B,C, n) and associated estimates of uncertainty are

given in Table 3.1.

Table 3.1 AC conductivity fitting parameters for unoxidized powders M316L1 through

M316L5. The reported uncertainty is the 95% confidence interval estimates

calculated by MATLAB using the nlparci function.

C, logA n B, log σ0
M316L1 −10.28± 0.03 0.896± 0.005 −5.007± 0.001

M316L2 −7.2± 0.8 0.6± 0.1 −2.689± 0.003

M316L3 −9.11± 0.01 0.751± 0.002 −5.162± 0.002

M316L4 −10.74± 0.02 0.922± 0.003 −6.73± 0.01

M316L5 −10.61± 0.03 0.901± 0.004 −5.696± 0.003
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Figure 3.1 Comparison of metal powder composite real conductivity
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3.2 Imaginary permittivity

The imaginary permittivity was extracted from the edge-corrected capacitance values as de-

scribed in Section 2.2 and shown in Figure 3.2. The oxidized powders NNL1 and NNL2, which

exhibit a visible loss peak, were fitted using the Havriliak-Negami model for dielectric relaxation

described in 2.2.3.2. The tabulated values of the fitting parameters and associated estimates of

uncertainty are in the following tables.

Table 3.2 DC conductivity parameters from the Havriliak-Negami fitting process

σ0 (S/cm) n

NNL1 (8.8± 9.9)× 10−10 (6.0± 1.7)× 10−1

NNL2 (4.1± 6.9)× 10−10 (6.3± 3.4)× 10−1

Table 3.3 Havriliak-Negami function fitting parameters for oxidized powders NNL1 and

NNL2, k = 1

∆ε1 τ1 (s) ε1,∞ α1 β1
NNL1 (7.5± 1.9)× 10−1 (0.2± 1.4)× 10−6 1.0000 Note (4.0± 3.5)× 10−1 1.0± 2.9

NNL2 (7.0± 0.9)× 10−1 (3.4± 9.0)× 10−7 1.0000 Note (4.1± 1.7)× 10−1 1.0± 1.3

Note: The uncertainty was to small to be reported by winFIT.

Table 3.4 Havriliak-Negami function fitting parameters for oxidized powders NNL1 and

NNL2, k = 2

∆ε2 τ2 (s) ε2,∞ α2 β2
NNL1 3.4± 4.3 (4.1± 2.1)× 10−4 1.0000 Note (6.6± 2.2)× 10−1 (9.6± 4.2)× 10−1

NNL2 3.2± 5.1 (7.4± 6.0)× 10−4 1.0000 Note (7.5± 1.4)× 10−1 (8.4± 1.8)× 10−1

Note: The uncertainty was to small to be reported by winFIT.
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Figure 3.2 Comparison of metal powder composite imaginary permittivity
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3.3 Observations and discussion

The broadband dielectric spectroscopy measurement results are broken down into three obser-

vation categories and discussed: size distribution, morphology, and surface oxidation. Within each

category, the effects of the variation in the powder property on the dielectric spectra are discussed.

In general it was observed that unoxidized powders M316L1 through M316L5 behaved as poor,

charge hopping conductors with no observable loss peak in the frequency range examined and

limited DC conductivity within the range of 10−7 to 10−3 S/m. Evidence for the charge hopping

mechanism can be seen in the low frequency dispersion of the real part of the permittivity in Figure

3.3 and the low frequency dispersion of the real part of the conductivity in Figure 3.1. If the system

were exhibiting solely DC conductivity, the low frequency behavior of the real permittivity would

be independent of frequency as would the real conductivity (i.e the real permittivity and conduc-

tivity would be flat). The low frequency dispersion suggests that the DC conduction mechanism

is also a polarization mechanism. As the composites studied are not ionic conductors this leads to

the conclusion that the systems are exhibiting charge hopping conduction and polarization. The

imaginary permittivity plot for powders M316L1 through M316L5 consists of two log-log linear re-

gions. The two regions of behavior give evidence of two physically different relaxation mechanisms

occurring in tandem. Additionally, the log-log linear behavior describes a relaxation mechanism

whose losses are not dependent upon frequency but rather are constant per transition (16). The

oxidized powders NNL1 and NNL2 showed the emergence of a loss peak within the frequency range

examined and demonstrated more insulative behavior with very small DC conductivities on the

order of 10−8 S/m. The emergence of the loss peak describes a polarization mechanism which

has losses proportional to frequency or requires a constant time delay for a transition (16). Both

dipolar processes, such as the reorientation of dipoles in a Debye model, and thermally activated

single-particle transitions over potential barriers exhibit these behaviors. Determining the presence

of a specific polarization mechanism in light of the available microscopic theory requires an analysis

of the activation energy for the polarization mechanism. The activation energy can be estimated by

measuring the dielectric response at different temperatures. With respect to the dielectric behavior
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of the powder composites NNL1 and NNL2, it is expected that there will be dielectric responses

of both a dipolar and charge hopping nature. The additional oxide layer may delay or alter the

dipolar response of the metal particles; which form dipoles when exposed to a uniform electric

field. The dipolar response of the metal particles is not visible in the dielectric response of powders

M316L1 through M316L5 because the response is outside of the measured frequency range. The

oxide may also present a barrier to thermally activated single-particle transitions by extending the

distance between energetically favorable transition sites; thereby increasing the energy required for

the transition or decreasing the transition rate (17).

3.3.1 Size distribution

Powders M316L1, M316L4, and M316L5 were modified by the manufacturer in order to allow

the effects of changing the particle size distribution on the dielectric spectra to be examined. The

particle size distributions can be seen in Figure 2.2, and are summarized as follows; M316L1 has

a wide distribution, M316L4 has been depleted of fines (i.e. particles with dimension ≤ 25 µm

have been removed), M316L5 has a bimodal distribution of larger particles ∼ 62 µm and smaller

particles ∼ 25 µm. The real conductivity results show that composites which have a larger number

of small particles (M316L1 and M316L5) have higher DC conductivity and transition frequency

(ωc) than powders which have been depleted of small particles (M316L4). This behavior may be

explained by examining the possible percolation path lengths due to the metallic inclusions in the

material. Figure 3.4 shows an example two dimensional material which initially is composed of ten

large particles in a matrix. The area fraction of the inclusions in this material is

area fraction =
number of inclusions× area of inclusion

area total
=

10(π/4)D2
1

Atotal
(3.1)
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Figure 3.3 Plot of real permittivity ε′(ω). Each data value is the mean of 100 measure-

ments. The reported uncertainty is the standard uncertainty multiplied by a

coverage factor k = 2, providing a level of confidence of approximately 95%.
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Next, the material is modified to include small particles such that the area fraction remains the

same and the powder is composed of 75% large particles and 25% small particles C = (1/3)B.

10(π/4)D2
1

Atotal
=
B(π/4)D2

1

Atotal
+
C(π/4)D2

2

Atotal
(3.2)

10D2
1 = BD2

1 + CD2
2 (3.3)

10D2
1 = BD2

1 + (1/3)BD2
2 (3.4)

B =
10D2

1

D2
1 + (1/3)D2

2

(3.5)

(3.6)

Substituting for particle sizes representative of the powders D1 = 53 µm and D2 = 25 µm, gives

the result B = 9.3 and C = 3.1. This result is shown in Figure 3.4. The effect of adding small

particles while maintaining the same volume/area fraction is an increase in the possible linear span

of the percolating networks. In this example losing one large particle results in the addition of

approximately three small particles with an overall gain in possible linear span of approximately 22

µm. As the linear span of the percolating networks throughout the sample increases, the probability

of forming a sample-wide conducting pathway increases, as well as the formation of multiple such

parallel networks; causing an overall increase in conductivity.

3.3.2 Morphology

Powders M316L2 and M316L3 were modified by the manufacturer to change the particle mor-

phology. Using water atomization in the manufacturing process creates highly irregular non-

spherical shapes. M316L2 was designed to be the most irregularly shaped powder and is composed

of prolate spheroids as seen in Figure 2.1. Powder M316L3 was designed to be more nearly spherical

than M316L2. Two possible measures of the change in the particle morphology away from spheri-

cal are the apparent density and the powders flow ability. Spherical particles have higher packing

fractions and therefore a higher apparent density. Irregularly shaped, non-spherical particles have

higher ratios of surface area to volume. The increase in surface area causes greater interparticle

friction which reduced the flow ability of the powder (28). A comparison of the manufacturer pro-
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Figure 3.4 Example composite showing that for the same volume fraction, composites

which contain smaller particles may have longer possible linear spans and

greater probability of forming percolating pathways

vided flow ability and apparent density for powders M316L2 and M316L3 can be seen in Table 3.5.

The M316L2 composite had the highest DC conductivity and sample to sample variability of the

composites tested. The dielectric behavior of the M316L2 composite is nearly pure DC conduction

as seen in Figure 3.2, where the log-log slope of the imaginary permittivity is nearly −1 and in-

dependent of frequency. However, the accompanying relaxation in the real permittivity shown in

Figure 3.3 suggests that the DC conduction mechanism is also the polarization mechanism. This

behavior follows the discussion in Section 1.3.3. Sillars demonstrated that elongation of the filler

particles in the direction of the applied field results in an increase in the dielectric losses (22).

Sillars also generalized his theory to randomly oriented ellipsoids finding that the assumption that

the unique axis points along the direction of the applied field over estimates the permittivity by a

factor of three (22). The experimental results confirm this theory and show that as the particles

take on prolate spheroidal shapes as opposed to spherical shapes the dielectric losses increase.
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Table 3.5 Comparison of the flow ability and apparent density for powders M316L2 and

M316L3.

Apparent Density (g/cc) Flow (Sec/50g)

M316L2 2.82 28

M316L3 3.58 20

3.3.3 Surface oxidation

Powders NNL1 and NNL2 were prepared to examine the effect of increasing the surface oxi-

dation of the 316L powder. NNL2 is nominally the more highly oxidized powder with a target

oxygen content increase of 0.35% whereas NNL1 has a target oxygen content increase of 0.25%.

The additional surface oxidation changes the nature of the dielectric response and adds a visi-

ble relaxation peak to the imaginary permittivity seen in Figure 3.2, this relaxation peak is not

present for the unoxidized powders M316L1 through M316L5. The presence of the relaxation peak

is explained by Jonscher as a polarization mechanism with frequency dependent loss or constant

time required for transition (17). The additional surface oxide may be acting as a barrier to the

charge hopping mechanism in the composites or altering the dipolar response of the metal parti-

cles. The observed shift in the relaxation frequency can be modeled with MWS relaxation at one

of the interfacial boundaries (oxide to matrix and oxide to core metal) where there is a contrast

in material properties. Because there are two interfaces it is expected that there will be another

MWS relaxation peak. However, the second MWS relaxation peak was not observed, most likely

because it occurs at a higher frequency outside of the frequencies measured in this study. The DC

conductivity of the composite lowers as the oxygen content is increased. The NNL1 composite is

nearly twice as conductive as the more oxidized NNL2 composite. Subtracting the DC conductivity

contribution from the imaginary permittivity allows the relaxation peaks to be seen in greater detail

as shown in Figure 3.5, where it can be seen that increasing the surface oxide thickness causes a

shift in the relaxation peak frequency. The effect of the interfacial layer can be modeled using a

modified Maxwell-Wagner-Sillars equation given in (15). As an example, the modified Maxwell-

Wagner-Sillars equation is applied to a system designed to approximate the oxidized metal powder
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composites. The system is composed of a dielectric matrix material with frequency independent

conductivity and permittivity

ε∗m = ε′m − jσm/(ε0ω)

an inclusion material with a 30% volume fraction made of a core of conductive material

ε∗f = ε′f − jσf/(ε0ω)

and a shell of dielectric material with frequency independent conductivity and permittivity

ε∗l = ε′l − jσl/(ε0ω)

The layer thickness was varied from near zero to a final layer thickness of 5% of the core radius.

Additionally, the layer thickness increases at the expense of the matrix. The results of the model

are shown in Figure 3.6. The Figure shows that as the layer thickness is increased the relaxation

peak frequency shifts to lower frequencies and the dielectric losses increase; which is the behavior

observed in Figure 3.5. The results of this approximation suggest that the cause of the relaxation

peak observed in the imaginary permittivity may be interfacial polarization at the matrix to oxide

or oxide to core interfaces. The surface oxide of powders NNL1 and NNL2 was further charac-

terized by the Naval Nuclear Laboratory using Auger electron spectroscopy (AES). The surface

of representative particles were bombarded with ions to remove material in a controlled fashion

while monitoring the oxygen content of the particle by analyzing the AES spectra. The oxide layer

thickness was estimated from the oxygen depth profile. An example of the depth profile can be

seen in Figure 3.7. The results of the AES analysis give the oxide layer for NNL1 as ≈ 1000Å

and NNL2 as ≈ 1000Å− 2000Å. Therefore, broadband dielectric spectroscopy can distinguish the

change in oxide layer thickness on the order of hundreds of nanometers.
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Table 3.6 Parameter values used in the modified MWS equation to show the effect of the

oxide layer.

ε′ σ (S/m)

Matrix 2.7 1.26× 10−6

Core 1 1× 106

Shell 14.2 4× 102

Figure 3.5 Plot of imaginary conductivity for NNL1 and NNL2 composites with DC con-

ductivity contribution removed.
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Figure 3.6 Results of modified MWS model with parameter values from Table 3.6 showing

the shift in the relaxation peak frequency as the layer thickness is increased.



www.manaraa.com

53

(a)

(b)

Figure 3.7 (a) AES depth profile for a representative particle from powder NNL1. (b)

AES depth profile for a representative particle from powder NNL2. The depth

profile shows the decrease in the oxygen content with depth, giving an estimate

of the oxide layer thickness. Source: NNL courtesy of Michael Burrell.
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3.4 Conclusion

In summary, the goal of this research is to assess the feasibility of using the electrical properties

of the metal feed powder to characterize the overall quality of the feed powder used in additive

manufacturing. Seven metal powders were fabricated or modified to model the possible changes

which occur in the feed powder during the additive manufacturing process. The powders were mod-

ified to create differences in size distribution, particle morphology, and degree of surface oxidation.

The electrical properties of the powder were measured by incorporating the powder into paraffin

wax-based composites; which were then shaped into suitable samples for measurement. The elec-

trical properties of the composites were then measured using broadband dielectric spectroscopy. It

was found that the changes in size distribution, morphology, and surface oxidation were detectable

using broadband dielectric spectroscopy. Removing small particles from the powder was shown to

lower the DC conductivity of the metal powder wax composite. Changes to the particle morphology

caused by the water atomization fabrication technique caused an increase in the DC conductivity

of the composite. The development or growth of the surface oxide causes a significant change in

the dielectric behavior of the composites with the emergence of a loss peak in the dielectric spectra.

The position of the loss peak is related to the thickness of the oxide layer. These findings support

the hypothesis that the changes in the feed powder through the additive manufacturing process will

cause a change in the powders complex permittivity; which can then be detected using broadband

dielectric spectroscopy. The results of this research show that it is feasible to use the electrical

properties of the metal feed powder to characterize the powder, and can serve as the basis for the

future development of online nondestructive evaluation methods to monitor the changes in the feed

powder throughout the additive manufacturing process.

There are several nondestructive evaluation techniques to measure the permittivity of a sub-

stance such as; capacitive methods using interdigital capacitors, coaxial probe, resonant cavity, and

transmission line methods. These various methods could be incorporated into the powder bed fusion

system to scan the surface of the powder bed or incorporated into the powder delivery mechanism

to measure the feed powder properties. Future work should examine the sensitivity of these various
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techniques to the changes in the feed powder properties and monitor the change in feed powder

properties throughout several build cycles. The use of advanced nondestructive evaluation sensors

could enable the intelligent setting and modification of process parameters throughout the build

process. Current additive manufacturing systems operate open loop; which means that there is no

feedback from the system to aid in setting the process parameters. Without system feedback the

technicians operating the system must adjust process parameters until the built part is satisfactory.

Incorporating nondestructive sensors would help to close the loop by giving technicians valuable

feedback and ensure consistent high quality part production while maximizing feed powder reuse.
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